Difference between revisions of "Olympus Mons"

From Marspedia
Jump to: navigation, search
(→‎References:: added category)
(11 intermediate revisions by 3 users not shown)
Line 1: Line 1:
'''Olympus Mons''' is a dormant [[shield volcano|shield]] [[volcano]] in the [[Tharsis]] region. It is the highest point on Mars.  By one measure, it has a height of nearly 22&nbsp;km (13.6&nbsp;mi or 72,000&nbsp;ft).<ref name=Plescia04>{{cite journal | last1 = Plescia | first1 = J. B. | year = 2004 | title = Morphometric Properties of Martian Volcanoes | url = | journal = J. Geophys. Res. | volume = 109 | issue = | page = E03003 | doi = 10.1029/2002JE002031 | bibcode=2004JGRE..109.3003P}}</ref>  Olympus Mons
+
{{Mars atlas}}
stands about two and a half times as tall as Mount Everest's height above sea level. It is the youngest of the large volcanoes on Mars. It is currently the largest volcano discovered in the Solar System and had been known to astronomers since the late 19th century as the albedo feature Nix Olympica (Latin for "Olympic Snow"). Its mountainous nature was suspected well before space probes confirmed its identity as a mountain.<ref>[[Patrick Moore]] 1977, ''Guide to Mars'', London (UK), Cutterworth Press, p. 96</ref>
+
[[Image:Olympus_Mons.jpg|thumb|right|300px|Olympus Mons as seen by [[Mars Global Surveyor]]]]
 +
'''Olympus Mons''' is a dormant [[shield volcano]] in the [[Tharsis]] region of Mars. It is easily the tallest volcano on Mars, and is believed to be the tallest in the [[Solar System]].
 +
 
 +
== Location ==
 +
 
 +
The volcano is located in Mars's western hemisphere at approximately 18.65 N and 226.2 E, just to the northwestern edge of the [[Tharsis]] Bulge. The western portion of the volcano lies in the Amazonis quadrangle and the central and eastern portions in the Tharsis quadrangle.
  
[[File: Olympus Mons Side View.svg.png|thumb|left|300px|Height of Olympus Mons compared tall mountains on Earth]]
+
== Dimensions ==
  
 +
The top of ''Olympus Mons'' is the highest point on Mars.  By one measure, it has a height of nearly 22&nbsp;km (13.6&nbsp;mi or 72,000&nbsp;ft).<ref name=Plescia04>Plescia | first1 = J. B. | year = 2004 | title = Morphometric Properties of Martian Volcanoes | url = | journal = J. Geophys. Res. | volume = 109 | issue = | page = E03003</ref>. Olympus Mons stands about two and a half times as tall as Mount Everest's height above sea level, and is currently the largest volcano discovered in the Solar System.
  
[[Image:France OlympusMons Size.svg.png|thumb|right|300px|Olympus Mons compared to the country of France]]  
+
[[File: Olympus Mons Side View.svg.png|thumb|left|300px|Height of Olympus Mons compared tall mountains on Earth]]
  
The volcano is located in Mars's western hemisphere at approximately 18.65 N and 226.2 E, just to the northwestern edge of the Tharsis bulge.<ref>https://planetarynames.wr.usgs.gov/Page/MARS/target</ref>  The western portion of the volcano lies in the Amazonis quadrangle and the central and eastern portions in the Tharsis quadrangle.
+
At 600 km (370 mi) in diameter the footprint of Olympus Mons covers an area of land comparable to the size of France.
  
Olympus Mons probably has the same composition to most of the dark areas on Mars. These dark areas were formed by volcanic eruptions. The surface of Mars, including Olympus Mons is basalt of a type (tholeiites) similar to that of Earth's oceanic crust.  This is the general conclusion drawn from  Martian meteorites, analyses of soils and rocks at robotic landing sites, and information gathered with orbiting spacecraft.<ref> McSween Jr., H. Y., Taylor, G. J., and Wyatt, M. B. 2009.  Elemental Composition of the Martian Crust. Science, v. 324(5928), p.736-739, doi: 10.1126/science.1165871. </ref> <ref>http://www.psrd.hawaii.edu/May09/Mars.Basaltic.Crust.html</ref>
+
[[Image:France OlympusMons Size.svg.png|thumb|right|300px|Olympus Mons compared to the country of France]]
  
Lava flows of this composition would have displayed low viscosity, a watery flow that would have produced a volcano with a very gradual slope.<ref>https://en.wikipedia.org/w/index.php?title=Olympus_Mons&action=edit&section=1</ref>
+
== Age ==
 +
 
 +
It is the youngest of the large volcanoes on Mars and some of the evidence from the ancient lava flows suggest a range in age from 115 million years old to 2000 million years old. This is relatively recent in comparison to most of Mars' other geology.
 +
 +
== Composition ==
 +
 
 +
=== Rock ===
 +
 
 +
Much of the terrain is obscured by fine dust covering the underlying bedrock but Olympus Mons probably has the same composition to most of the dark areas on Mars which were formed by volcanic eruptions.  The surface of Mars, including Olympus Mons is basalt of a type (tholeiites) similar to that of Earth's oceanic crust.  This is the general conclusion drawn from  Martian meteorites, analyses of soils and rocks at robotic landing sites, and information gathered with orbiting spacecraft.<ref> McSween Jr., H. Y., Taylor, G. J., and Wyatt, M. B. 2009.  Elemental Composition of the Martian Crust. Science, v. 324(5928), p.736-739, doi: 10.1126/science.1165871. </ref> <ref>"Mars Crust : Made of Basalt" http://www.psrd.hawaii.edu/May09/Mars.Basaltic.Crust.html</ref>
 +
 
 +
Lava flows consisting of this composition would have low viscosity producing a watery flow that creates a typical shield volcanoes. Olympus Mons has a very gradual slope of, on average, only 5°.<ref>Wikipedia Olympus Mons https://en.wikipedia.org/w/index.php?title=Olympus_Mons</ref> It would be a long but very gentle climb up Olympus Mons.
 +
 
 +
[[Image: 44828 2030lavaflow.jpg|thumb|right|300px|Lava flows from Olympus Mons, as seen by HiRISE]]
  
 
High-altitude clouds frequently drift over the Olympus Mons summit, and airborne Martian dust is still present.<ref>Hartmann, W.K. ''A Traveler’s Guide to Mars: The Mysterious Landscapes of the Red Planet.'' Workman: New York, 2003, p. 300.</ref>  
 
High-altitude clouds frequently drift over the Olympus Mons summit, and airborne Martian dust is still present.<ref>Hartmann, W.K. ''A Traveler’s Guide to Mars: The Mysterious Landscapes of the Red Planet.'' Workman: New York, 2003, p. 300.</ref>  
The typical atmospheric pressure at the top of Olympus Mons is  about 12% of the average Martian surface pressure.<ref name="stanford">[http://www-star.stanford.edu/projects/mgs/tps-public.html Public Access to Standard Temperature-Pressure Profiles]</ref> 
+
The typical atmospheric pressure at the top of Olympus Mons is  about 12% of the average Martian surface pressure.<ref name="stanford">[http://www-star.stanford.edu/projects/mgs/tps-public.html Public Access to Standard Temperature-Pressure Profiles]</ref>
Olympus Mons is an unlikely landing location for automated space probes in the near future. The high elevations preclude parachute-assisted landings because of insufficient atmospheric thickness to slow the spacecraft down. Moreover, Olympus Mons stands in one of the dustiest regions of Mars. A mantle of fine dust covers much of the terrain, obscuring the underlying bedrock and possibly making rock samples hard to come by. The dust layer would also likely cause severe maneuvering problems for rovers.<ref>https://en.wikipedia.org/w/index.php?title=Olympus_Mons&action=edit&section=1</ref>
 
  
 +
=== Ice ===
 
As with tall mountains on the Earth, there has been much snowfall on Olympus Mons.  Scientists see much evidence for glaciers.<ref name="Basilevsky, A. 2006">{{Cite journal|author=Basilevsky, A.  |date=2006 |title=Geological recent tectonic, volcanic and fluvial activity on the eastern flank of the Olympus Mons volcano, Mars |journal=Geophysical Research Letters |volume=33 |issue=13 |pages=13201, L13201 |doi=10.1029/2006GL026396 | |last2=Werner |first2=S. C. |last3=Neukum |first3=G. |last4=Head |first4=J. W. |last5=Van Gasselt |first5=S. |last6=Gwinner |first6=K. |last7=Ivanov |first7=B. A. }}</ref>
 
As with tall mountains on the Earth, there has been much snowfall on Olympus Mons.  Scientists see much evidence for glaciers.<ref name="Basilevsky, A. 2006">{{Cite journal|author=Basilevsky, A.  |date=2006 |title=Geological recent tectonic, volcanic and fluvial activity on the eastern flank of the Olympus Mons volcano, Mars |journal=Geophysical Research Letters |volume=33 |issue=13 |pages=13201, L13201 |doi=10.1029/2006GL026396 | |last2=Werner |first2=S. C. |last3=Neukum |first3=G. |last4=Head |first4=J. W. |last5=Van Gasselt |first5=S. |last6=Gwinner |first6=K. |last7=Ivanov |first7=B. A. }}</ref>
  
 +
== Exploration ==
 +
 +
Olmypus Mons has been known to astronomers since the late 19th century as the albedo feature Nix Olympica (Latin for "Olympic Snow"). Its mountainous nature was suspected well before space probes confirmed its identity as a mountain.<ref>Patrick Moore.  1977. ''Guide to Mars.''  London (UK).  Cutterworth Press, p. 96</ref>
 +
 +
Unfortunately Olympus Mons is an unlikely landing location for automated space probes in the near future. The high elevations preclude parachute-assisted landings because the atmosphere above is not sufficient to slow the spacecraft down before landing. Moreover, Olympus Mons stands in one of the dustiest regions of Mars. This would likely make rock samples hard to come by and the dust layer would also likely cause severe maneuvering problems for rovers.<ref>https://en.wikipedia.org/w/index.php?title=Olympus_Mons</ref>
  
[[Image:Olympus_Mons.jpg|thumb|right|300px|Olympus Mons as seen by [[Mars Global Surveyor]]]]
+
== References ==
[[Image: 44828 2030lavaflow.jpg|thumb|right|300px|Lava flows from Olympus Mons, as seen by HiRISE]]
 
  
===References:===
 
 
<references/>
 
<references/>
  
{{stub}}
+
== See Also ==
[[Category:Aerography]]
+
*[[Geography of Mars]]
[[Category:Geography]]
 
[[category:volcano]]
 
  
[[Category: Place Names]]
+
[[Category:Mars Atlas]]

Revision as of 20:12, 7 January 2020

Mars topography (MOLA dataset) HiRes (1).jpg
Olympus Mons as seen by Mars Global Surveyor

Olympus Mons is a dormant shield volcano in the Tharsis region of Mars. It is easily the tallest volcano on Mars, and is believed to be the tallest in the Solar System.

Location

The volcano is located in Mars's western hemisphere at approximately 18.65 N and 226.2 E, just to the northwestern edge of the Tharsis Bulge. The western portion of the volcano lies in the Amazonis quadrangle and the central and eastern portions in the Tharsis quadrangle.

Dimensions

The top of Olympus Mons is the highest point on Mars. By one measure, it has a height of nearly 22 km (13.6 mi or 72,000 ft).[1]. Olympus Mons stands about two and a half times as tall as Mount Everest's height above sea level, and is currently the largest volcano discovered in the Solar System.

Height of Olympus Mons compared tall mountains on Earth

At 600 km (370 mi) in diameter the footprint of Olympus Mons covers an area of land comparable to the size of France.

Olympus Mons compared to the country of France

Age

It is the youngest of the large volcanoes on Mars and some of the evidence from the ancient lava flows suggest a range in age from 115 million years old to 2000 million years old. This is relatively recent in comparison to most of Mars' other geology.

Composition

Rock

Much of the terrain is obscured by fine dust covering the underlying bedrock but Olympus Mons probably has the same composition to most of the dark areas on Mars which were formed by volcanic eruptions. The surface of Mars, including Olympus Mons is basalt of a type (tholeiites) similar to that of Earth's oceanic crust. This is the general conclusion drawn from Martian meteorites, analyses of soils and rocks at robotic landing sites, and information gathered with orbiting spacecraft.[2] [3]

Lava flows consisting of this composition would have low viscosity producing a watery flow that creates a typical shield volcanoes. Olympus Mons has a very gradual slope of, on average, only 5°.[4] It would be a long but very gentle climb up Olympus Mons.

Lava flows from Olympus Mons, as seen by HiRISE

High-altitude clouds frequently drift over the Olympus Mons summit, and airborne Martian dust is still present.[5] The typical atmospheric pressure at the top of Olympus Mons is about 12% of the average Martian surface pressure.[6]

Ice

As with tall mountains on the Earth, there has been much snowfall on Olympus Mons. Scientists see much evidence for glaciers.[7]

Exploration

Olmypus Mons has been known to astronomers since the late 19th century as the albedo feature Nix Olympica (Latin for "Olympic Snow"). Its mountainous nature was suspected well before space probes confirmed its identity as a mountain.[8]

Unfortunately Olympus Mons is an unlikely landing location for automated space probes in the near future. The high elevations preclude parachute-assisted landings because the atmosphere above is not sufficient to slow the spacecraft down before landing. Moreover, Olympus Mons stands in one of the dustiest regions of Mars. This would likely make rock samples hard to come by and the dust layer would also likely cause severe maneuvering problems for rovers.[9]

References

  1. Plescia | first1 = J. B. | year = 2004 | title = Morphometric Properties of Martian Volcanoes | url = | journal = J. Geophys. Res. | volume = 109 | issue = | page = E03003
  2. McSween Jr., H. Y., Taylor, G. J., and Wyatt, M. B. 2009. Elemental Composition of the Martian Crust. Science, v. 324(5928), p.736-739, doi: 10.1126/science.1165871.
  3. "Mars Crust : Made of Basalt" http://www.psrd.hawaii.edu/May09/Mars.Basaltic.Crust.html
  4. Wikipedia Olympus Mons https://en.wikipedia.org/w/index.php?title=Olympus_Mons
  5. Hartmann, W.K. A Traveler’s Guide to Mars: The Mysterious Landscapes of the Red Planet. Workman: New York, 2003, p. 300.
  6. Public Access to Standard Temperature-Pressure Profiles
  7. Basilevsky, A. (2006). "Geological recent tectonic, volcanic and fluvial activity on the eastern flank of the Olympus Mons volcano, Mars". Geophysical Research Letters 33 (13): 13201, L13201. doi:10.1029/2006GL026396. 
  8. Patrick Moore. 1977. Guide to Mars. London (UK). Cutterworth Press, p. 96
  9. https://en.wikipedia.org/w/index.php?title=Olympus_Mons

See Also