Difference between revisions of "Nuclear thermal propulsion"

From Marspedia
Jump to: navigation, search
m
(We had two Nuclear thermal propulsion pages. I've merged them, and deleted one.)
Line 1: Line 1:
 
Nuclear thermal propulsion uses a nuclear core to heat a propellant and provide propulsion to a space vehicle.
 
Nuclear thermal propulsion uses a nuclear core to heat a propellant and provide propulsion to a space vehicle.
 +
 +
Nuclear Thermal Propulsion (NTP) uses a nuclear reactor to heat [[propellant]] directly and exhaust it through a nozzle.  The nuclear reactor core is the hottest element in the engine and limits the effectiveness of the drive. 
  
 
Liquid hydrogen is usually used as the propellant as it has a higher velocity for the same input power, and therefore produces a faster final velocity according to the [[Propulsion|rocket equation]]. An animated illustration of nuclear thermal rockets can be found at <ref>https://www.youtube.com/watch?v=3aBOhC1c6m8</ref>.
 
Liquid hydrogen is usually used as the propellant as it has a higher velocity for the same input power, and therefore produces a faster final velocity according to the [[Propulsion|rocket equation]]. An animated illustration of nuclear thermal rockets can be found at <ref>https://www.youtube.com/watch?v=3aBOhC1c6m8</ref>.
 +
 +
Nuclear thermal engines allow for shorter transit times and/or lower propellant requirements than chemical engines.  They are usually planed for orbital operations only, and are in completion with alternative technologies such as [[Nuclear Electric Propulsion]] (NEP) and [[Solar Electric Propulsion]] (SEP).
 +
 +
In the late 1960's NASA explored nuclear propulsion with the NERVA program.  It was expected that such nuclear rockets could achieve efficiencies of 900 seconds ISP.  (This is twice the efficiency of chemical rockets where efficiently engineered hydrogen-oxygen engines are around 450 seconds ISP.)
 +
 +
However, a little know technology, the wave rotor, can be used to further compress the hot gas from a nuclear rocket before it enters the rocket nozzle.  This can boost the ISP to 1,400 to 2,000 seconds.  If such a rocket with an ISP or 1,800 seconds could be created, missions to Mars would need 1/2 the reaction mass of a NERVA rocket, or 1/4 the reaction mass of a chemical rocket.  This would allow much more payload to be sent to Mars, and increase the safety, and efficiency of such missions.<ref>https://www.egr.msu.edu/mueller/NMReferences/HirceagaIancuMueller_2005Timisoara_WaveRotorsTechnologyAndApplications.pdf</ref><ref>https://www.nextbigfuture.com/2023/01/nuclear-wave-rotor-propulsion-could-get-ten-times-chemical-rocket-speeds.html</ref><ref>https://www.nasa.gov/directorates/spacetech/niac/2023/New_Class_of_Bimodal/</ref>
  
 
__NOTOC__
 
__NOTOC__

Revision as of 03:23, 24 January 2023

Nuclear thermal propulsion uses a nuclear core to heat a propellant and provide propulsion to a space vehicle.

Nuclear Thermal Propulsion (NTP) uses a nuclear reactor to heat propellant directly and exhaust it through a nozzle. The nuclear reactor core is the hottest element in the engine and limits the effectiveness of the drive.

Liquid hydrogen is usually used as the propellant as it has a higher velocity for the same input power, and therefore produces a faster final velocity according to the rocket equation. An animated illustration of nuclear thermal rockets can be found at [1].

Nuclear thermal engines allow for shorter transit times and/or lower propellant requirements than chemical engines. They are usually planed for orbital operations only, and are in completion with alternative technologies such as Nuclear Electric Propulsion (NEP) and Solar Electric Propulsion (SEP).

In the late 1960's NASA explored nuclear propulsion with the NERVA program. It was expected that such nuclear rockets could achieve efficiencies of 900 seconds ISP. (This is twice the efficiency of chemical rockets where efficiently engineered hydrogen-oxygen engines are around 450 seconds ISP.)

However, a little know technology, the wave rotor, can be used to further compress the hot gas from a nuclear rocket before it enters the rocket nozzle. This can boost the ISP to 1,400 to 2,000 seconds. If such a rocket with an ISP or 1,800 seconds could be created, missions to Mars would need 1/2 the reaction mass of a NERVA rocket, or 1/4 the reaction mass of a chemical rocket. This would allow much more payload to be sent to Mars, and increase the safety, and efficiency of such missions.[2][3][4]


History of nuclear thermal propulsion

American

Nerva[5]

Propellant Liquid hydrogen
Performance
Thrust (vac.) 246,663 N (55,452 lbf)
Chamber pressure 3,861 kPa (560.0 psi)
Isp (vac.) 841 seconds (8.25 km/s)
Isp (SL) 710 seconds (7.0 km/s)
Burn time 1,680 seconds
Thrust to weigh ratio 1.36
Restarts 24
Dimensions
Length 6.9 meters (23 ft)
Diameter 2.59 meters (8 ft 6 in)
Dry weight 18,144 kilograms (40,001 lb)

Russian

Analysis of use

Advantages

  • Higher ISP than chemical
  • Higher power energy source
  • Shorter travel time
  • Oberth effect
  • Self cooling

Disadvantages

  • Cost
  • Cost of development
  • Risk of accident
  • Lower ISP than electric
  • Low public trust
  • Thrust to weight ratio close to 1 (cannot take off from Earth with a significant payload)

Types

  • Solid core[6]
  • Gas core[7]
  • Nuclear light bulb, open and closed[8]
  • Nuclear salt water rockets[9]

References