Difference between revisions of "Regolith"
m (Added composition data from study of Martian meteorites) |
|||
Line 6: | Line 6: | ||
<ref>How the landscape is formed to the shape of floods: [http://mars.jpl.nasa.gov/mgs/sci/fifthconf99/6005.pdf THE COLLAPSE ORIGIN OF DENSITY FLOWS ON MARS]</ref> | <ref>How the landscape is formed to the shape of floods: [http://mars.jpl.nasa.gov/mgs/sci/fifthconf99/6005.pdf THE COLLAPSE ORIGIN OF DENSITY FLOWS ON MARS]</ref> | ||
− | == | + | ==Composition== |
The below table gives estimates of mineral composition based on the soil sample measurements performed by two Mars probes. Only the 6 most abundant minerals are listed. | The below table gives estimates of mineral composition based on the soil sample measurements performed by two Mars probes. Only the 6 most abundant minerals are listed. | ||
{| class="wikitable" | {| class="wikitable" | ||
− | |+Estimated abundance (weight %) of main components of Martian soil<ref>Bell JF, McSween HY, Crisp JA, Morris RV, Murchie SL, Bridges NT,...Soderblom L. (2000). ''Journal of Geophysical Research'', 105(E1), 1721-1755. <nowiki>https://doi.org/10.1029/1999JE001060</nowiki></ref> | + | |+Estimated abundance (weight %) of main components of Martian soil<ref>Bell JF, McSween HY, Crisp JA, Morris RV, Murchie SL, Bridges NT,...Soderblom L. (2000). Mineralogic and compositional properties of Martian soil and dust: Results from Mars Pathfinder. ''Journal of Geophysical Research'', 105(E1), 1721-1755. <nowiki>https://doi.org/10.1029/1999JE001060</nowiki></ref> |
! | ! | ||
!SiO<sub>2</sub> | !SiO<sub>2</sub> | ||
Line 33: | Line 33: | ||
|6.3 | |6.3 | ||
|5.4 | |5.4 | ||
+ | |} | ||
+ | The following table shows the results of an analysis of 11 igneous meteorites of Martian origin, which were divided into 5 standard geological categories based on their composition. | ||
+ | {| class="wikitable" | ||
+ | |+Atomic density values from a sample of Martian meteorites<ref>Kim MY, Thibeault SA, Simonsen LC, Wilson JW. (1998). Comparison of Martian Meteorites and Martian Regolith as Shield Materials for Galactic Cosmic Rays. NASA TP-1998-208724. <nowiki>http://hdl.handle.net/2060/19980237030</nowiki></ref> | ||
+ | !Element | ||
+ | ! colspan="5" |Atoms/gram | ||
+ | |- | ||
+ | | | ||
+ | |Basalt | ||
+ | |Lherzolite | ||
+ | |Clinopyroxenite | ||
+ | |Orthopyroxenite | ||
+ | |Dunite | ||
+ | |- | ||
+ | |O | ||
+ | |1.60 X 10<sup>22</sup> | ||
+ | |1.58 X 10<sup>22</sup> | ||
+ | |1.54 X 10<sup>22</sup> | ||
+ | |1.65 X 10<sup>22</sup> | ||
+ | |1.51 X 10<sup>22</sup> | ||
+ | |- | ||
+ | |Na | ||
+ | |2.35 X 10<sup>20</sup> | ||
+ | |9.15 X 10<sup>19</sup> | ||
+ | |1.13 X 10<sup>20</sup> | ||
+ | |2.66 X 10<sup>19</sup> | ||
+ | |2.51 X 10<sup>19</sup> | ||
+ | |- | ||
+ | |Mg | ||
+ | |1.61 X 10<sup>21</sup> | ||
+ | |4.07 X 10<sup>21</sup> | ||
+ | |1.79 X 10<sup>21</sup> | ||
+ | |3.77 X 10<sup>21</sup> | ||
+ | |4.81 X 10<sup>21</sup> | ||
+ | |- | ||
+ | |Al | ||
+ | |8.50 X 10<sup>20</sup> | ||
+ | |3.34 X 10<sup>20</sup> | ||
+ | |1.94 X 10<sup>20</sup> | ||
+ | |1.45 X 10<sup>20</sup> | ||
+ | |8.23 X 10<sup>19</sup> | ||
+ | |- | ||
+ | |Si | ||
+ | |5.01 X 10<sup>21</sup> | ||
+ | |4.50 X 10<sup>21</sup> | ||
+ | |4.88 X 10<sup>21</sup> | ||
+ | |5.38 X 10<sup>21</sup> | ||
+ | |3.87 X 10<sup>21</sup> | ||
+ | |- | ||
+ | |P | ||
+ | |5.60 X 10<sup>19</sup> | ||
+ | |2.00 X 10<sup>19</sup> | ||
+ | |3.76 X 10<sup>18</sup> | ||
+ | |0 | ||
+ | |6.41 X 10<sup>18</sup> | ||
+ | |- | ||
+ | |K | ||
+ | |1.23 X 10<sup>19</sup> | ||
+ | |3.31 X 10<sup>18</sup> | ||
+ | |2.93 X 10<sup>19</sup> | ||
+ | |1.95 X 10<sup>18</sup> | ||
+ | |5.31 X 10<sup>18</sup> | ||
+ | |- | ||
+ | |Ca | ||
+ | |1.06 X 10<sup>21</sup> | ||
+ | |4.04 X 10<sup>20</sup> | ||
+ | |1.56 X 10<sup>21</sup> | ||
+ | |1.98 X 10<sup>20</sup> | ||
+ | |6.52 X 10<sup>19</sup> | ||
+ | |- | ||
+ | |Ti | ||
+ | |8.21 X 10<sup>19</sup> | ||
+ | |3.28 X 10<sup>19</sup> | ||
+ | |2.59 X 10<sup>19</sup> | ||
+ | |1.53 X 10<sup>19</sup> | ||
+ | |7.60 X 10<sup>18</sup> | ||
+ | |- | ||
+ | |Mn | ||
+ | |4.42 X 10<sup>19</sup> | ||
+ | |3.91 X 10<sup>19</sup> | ||
+ | |5.69 X 10<sup>19</sup> | ||
+ | |4.04 X 10<sup>19</sup> | ||
+ | |4.51 X 10<sup>19</sup> | ||
+ | |- | ||
+ | |Fe | ||
+ | |1.58 X 10<sup>21</sup> | ||
+ | |1.67 X 10<sup>21</sup> | ||
+ | |1.79 X 10<sup>21</sup> | ||
+ | |1.46 X 10<sup>21</sup> | ||
+ | |2.29 X 10<sup>21</sup> | ||
|} | |} | ||
Line 40: | Line 130: | ||
*What are the compositions of the regolith near possible settlement sites? | *What are the compositions of the regolith near possible settlement sites? | ||
− | == | + | ==References== |
<references /> | <references /> | ||
[[category:Areology]] | [[category:Areology]] |
Revision as of 16:30, 19 December 2018
Regolith is the layer of rocky or icy debris, sand, and dust made by meteoritic impact that forms the uppermost surface of planets, satellites and asteroids. It is a possible construction material in the form of bricks. Loose regolith may also be used as a radiation shield.
Landscapes with regolith formation have been found that look like they were shaped by the flow of water. Those formations were probably created by "gas-supported density flows". [1]
Composition
The below table gives estimates of mineral composition based on the soil sample measurements performed by two Mars probes. Only the 6 most abundant minerals are listed.
SiO2 | Fe2O3 | Al2O3 | MgO | CaO | SO3 | |
---|---|---|---|---|---|---|
Viking | 46.3 | 19.4 | 7.7 | 6.4 | 6.2 | 7.9 |
Pathfinder | 48.6 | 17.5 | 8.3 | 7.5 | 6.3 | 5.4 |
The following table shows the results of an analysis of 11 igneous meteorites of Martian origin, which were divided into 5 standard geological categories based on their composition.
Element | Atoms/gram | ||||
---|---|---|---|---|---|
Basalt | Lherzolite | Clinopyroxenite | Orthopyroxenite | Dunite | |
O | 1.60 X 1022 | 1.58 X 1022 | 1.54 X 1022 | 1.65 X 1022 | 1.51 X 1022 |
Na | 2.35 X 1020 | 9.15 X 1019 | 1.13 X 1020 | 2.66 X 1019 | 2.51 X 1019 |
Mg | 1.61 X 1021 | 4.07 X 1021 | 1.79 X 1021 | 3.77 X 1021 | 4.81 X 1021 |
Al | 8.50 X 1020 | 3.34 X 1020 | 1.94 X 1020 | 1.45 X 1020 | 8.23 X 1019 |
Si | 5.01 X 1021 | 4.50 X 1021 | 4.88 X 1021 | 5.38 X 1021 | 3.87 X 1021 |
P | 5.60 X 1019 | 2.00 X 1019 | 3.76 X 1018 | 0 | 6.41 X 1018 |
K | 1.23 X 1019 | 3.31 X 1018 | 2.93 X 1019 | 1.95 X 1018 | 5.31 X 1018 |
Ca | 1.06 X 1021 | 4.04 X 1020 | 1.56 X 1021 | 1.98 X 1020 | 6.52 X 1019 |
Ti | 8.21 X 1019 | 3.28 X 1019 | 2.59 X 1019 | 1.53 X 1019 | 7.60 X 1018 |
Mn | 4.42 X 1019 | 3.91 X 1019 | 5.69 X 1019 | 4.04 X 1019 | 4.51 X 1019 |
Fe | 1.58 X 1021 | 1.67 X 1021 | 1.79 X 1021 | 1.46 X 1021 | 2.29 X 1021 |
Open Issues
- How radioactive is regolith?
- What are the compositions of the regolith near possible settlement sites?
References
- ↑ How the landscape is formed to the shape of floods: THE COLLAPSE ORIGIN OF DENSITY FLOWS ON MARS
- ↑ Bell JF, McSween HY, Crisp JA, Morris RV, Murchie SL, Bridges NT,...Soderblom L. (2000). Mineralogic and compositional properties of Martian soil and dust: Results from Mars Pathfinder. Journal of Geophysical Research, 105(E1), 1721-1755. https://doi.org/10.1029/1999JE001060
- ↑ Kim MY, Thibeault SA, Simonsen LC, Wilson JW. (1998). Comparison of Martian Meteorites and Martian Regolith as Shield Materials for Galactic Cosmic Rays. NASA TP-1998-208724. http://hdl.handle.net/2060/19980237030