Difference between revisions of "Terraforming"
Line 1: | Line 1: | ||
'''Terraforming''', or ''Earth-shaping'', is a theoretical process of modifying a planet's atmosphere to make it habitable for humans. In the case of Mars, terraforming would require artificial thickening of the atmosphere to intensify the process of [[greenhouse effect|greenhouse warming]] (heating the frozen landscape), [[water|ice]] melting to increase the H<sub>2</sub>O content of the atmosphere (creating [[clouds|water clouds]]) and greatly increasing the [[oxygen|O<sub>2</sub>]] density to ultimately make the atmosphere breathable. | '''Terraforming''', or ''Earth-shaping'', is a theoretical process of modifying a planet's atmosphere to make it habitable for humans. In the case of Mars, terraforming would require artificial thickening of the atmosphere to intensify the process of [[greenhouse effect|greenhouse warming]] (heating the frozen landscape), [[water|ice]] melting to increase the H<sub>2</sub>O content of the atmosphere (creating [[clouds|water clouds]]) and greatly increasing the [[oxygen|O<sub>2</sub>]] density to ultimately make the atmosphere breathable. | ||
− | + | I'm out of league here. Too much brain power on disaply! | |
− | |||
− | |||
− | |||
− | |||
==Methods== | ==Methods== |
Revision as of 01:47, 2 November 2011
Terraforming, or Earth-shaping, is a theoretical process of modifying a planet's atmosphere to make it habitable for humans. In the case of Mars, terraforming would require artificial thickening of the atmosphere to intensify the process of greenhouse warming (heating the frozen landscape), ice melting to increase the H2O content of the atmosphere (creating water clouds) and greatly increasing the O2 density to ultimately make the atmosphere breathable.
I'm out of league here. Too much brain power on disaply!
Methods
A life supporting atmosphere needs to contain a "buffer gas", such as nitrogen. Mars is currently lacking in nitrogen, but nitrogen could be sourced from Venus, Saturn's moon Titan, or from comets. Mars could be warmed up using greenhouse gases such as perflurocarbons, which are stable in the atmosphere for long periods of time. Mirrors could be placed in orbit to increase the amount of insulation Mars receives.
Other greenhouse gasses include sulfur hexafluoride and 1,1,1-Trichloro ethane. These are very stable and highly effective greenhouse gasses. Use of such gasses to warm the atmosphere would allow the Carbon dioxide frozen into the polar caps and some of the water to evaporate adding to the mass of the atmosphere.If 4 hundredths of a microbar of manufactured greenhouse gas is needed to warm Mars to the point of runaway greenhouse effect, then a mass of manufactured greenhouse gasses equal to about 5.73 times the cargo capacity of the Edmund Fitzgerald every week for twenty years would be required for the project.
Pioneer Organisms
Certain organisms, such as archaea, lichen, and tardigrades have been proven capable of surviving extreme environments, such as the vacuum of space. They could gain a foothold on the martian surface after minimal terraforming. The byproducts of their metabolism would contribute to the terraforming efforts.
Long term prospect
The ultimate results of terraforming are disputed. Terraforming may have only a temporary effect, even if the effect lasts for some hundred or thousand years. Eventually, the solar wind may carry away most of the new atmosphere due to the insufficient magnetic fields of Mars. It has been suggested that the cost of terraforming a planet would be prohibative, however to a growing population on the surface of that planet it would most likely be considered a normal colonial function to ensure that daily colonial endeavours have a positive effect on the atmosphere.