Brick

From Marspedia
Revision as of 14:52, 4 March 2024 by RichardWSmith (talk | contribs) (Reversed sentence order to make meaning clearer.)
Jump to: navigation, search

Starting from Martian clay or other materials, a brick-maker can create a wide variety of structures and paved surfaces as well as furnaces and ovens for smelting, blacksmithing, glass-blowing, cooking, etc. The brick-making craft requires only other small-scale crafts for its equipment (blacksmithing for its iron tools), thus qualifies as a small-scale craft suitable for a frontier town (small and largely self-sufficient) economy.

Due to the 1/3 gravity, structures made out of brick can be much larger than on Earth, yet still hold up under their own weight and be easy to transport. However, due to the internal pressure required for most martian buildings, brick construction that also has to withstand pressure requires a separate air tight bladder structure or substantial reinforcements.

Material

The brick can be made from regolith, plastics, fiberglass or composite materials. Regolith can be sintered at high temperatures. A mixture of molten plastics and regolith powder can be produced at moderate temperatures. Bricks can be made stronger by having fibrous material in them. (e.g. ancient bricks were mixed with straw.) This could be plant stalks, plastics, glass fibres, etc.

Keep Brick Structures Under Compression

Bricks stand up well to forces that push them together, but the mortar (if any) is weaker, and brick structures do not stand up well to sideways forces. Building a brick structure on Mars, where the inside is pressurized is problematic, the sideways force created by the air pressure, would break the walls. If you want to have pressurized brick structures, either the air must be contained some other way (e.g. in an inflatable structure) or enough weight must be pressing down to keep the structure stable. Estimates of 6.5 meters of dirt above the structure would be safe. (If the Mars base used 40 bar rather than 100 bar air pressure, this weight could be reduced. Only 2.5 meters would be needed.) See "The Case for Mars" page 191 for more discussion on this point. Note that 6.5 meters of dirt above colony structures would provide excellent radiation protection.

Brick Manufacturing

"In fact, the UC San Diego engineers were initially trying to cut down on the amount of polymers required to shape Martian soil into bricks, and accidently discovered that none was needed. To make bricks out of Mars soil simulant, without additives and without heating or baking the material, two steps were key. One was to enclose the simulant in a flexible container, in this case a rubber tube. The other was to compact the simulant at a high enough pressure. The amount of pressure needed for a small sample is roughly the equivalent of someone dropping 10-lb hammer from a height of one meter, Qiao said.

The process produces small round soil pallets that are about an inch tall and can then be cut into brick shapes. The engineers believe that the iron oxide, which gives Martian soil its signature reddish hue, acts as a binding agent. They investigated the simulant's structure with various scanning tools and found that the tiny iron particles coat the simulant's bigger rocky basalt particles. The iron particles have clean, flat facets that easily bind to one another under pressure."[1][2]

Embodied energy

Different types of brick require different amounts of energy to produce.

Materials Embodied energy

(MJ/kg)

Density

(kg/m3)

Production
Regolith 0,5 2000 Regolith compressed and combined with some form of cement
Clay 3 2000 Martian clay baked and fired
Plastic 80-100 900 Plastic from biomass or CO2+hydrogen reactions
Glass 15 2500 Silica, cleaned and with required additives

See Also

Universal bricks

  1. Brian J. Chow, Tzehan Chen, Ying Zhong, Yu Qiao., University of California - San Diego. (2017, April 27). Engineers investigate a simple, no-bake recipe to make bricks from Martian soil. ScienceDaily. Retrieved November 16, 2021 from www.sciencedaily.com/releases/2017/04/170427091723.htm
  2. Brian J. Chow, Tzehan Chen, Ying Zhong, Yu Qiao. Direct Formation of Structural Components Using a Martian Soil Simulant. Sci Rep 7, 1151 (2017). https://doi.org/10.1038/s41598-017-01157-w