Difference between revisions of "Lighting"
(8 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | '''Lighting''' is vital for a colony. A colony | + | '''Lighting''' is vital for a colony. A colony will have a limited number of windows, so artificial lighting may be required at all times. [[Plants]] in [[greenhouse|greenhouses]] will probably need to be lit artificially to supplement natural light. [[Rover|Rovers]] must have headlamps for driving at night or during [[dust storms]]. |
Line 7: | Line 7: | ||
Most light bulbs on Earth were incandescent until recently. Due to their relatively low efficiency, incandescent lights are being phased out all over the world.<ref>https://en.wikipedia.org/wiki/Phase-out_of_incandescent_light_bulbs</ref> In most commercial installation incandescent light bulbs have been replaced by fluorescents, that are themselves being replaced by LEDs. | Most light bulbs on Earth were incandescent until recently. Due to their relatively low efficiency, incandescent lights are being phased out all over the world.<ref>https://en.wikipedia.org/wiki/Phase-out_of_incandescent_light_bulbs</ref> In most commercial installation incandescent light bulbs have been replaced by fluorescents, that are themselves being replaced by LEDs. | ||
− | + | Incandescence is a term usually reserved for a solid that emits light as it is heated. In an incandescent light-bulb a metal filament (Usually [[tungsten]], but carbon has also been used in the past,) is heated to around 3000C. A [[glass]] or quartz bulb is fitted around the filament and the air evacuated or replaced by an inert gas, because the filament would otherwise oxidize and burn. | |
+ | ===Halogen=== | ||
+ | Halogen light are a variation on incandescent lights, where the filament can last longer due to chemical interactions between the tungsten element and the halogen gas in the bulb. | ||
+ | |||
===Fluorescent=== | ===Fluorescent=== | ||
+ | Fluorescent lights use a phosphorous coating inside the lamp tube to transform the ultraviolet light emitted by an ionised plasma in the tube into visible light. | ||
− | === | + | ===Light Emitting Diode (LED)=== |
− | + | [[Light emitting diode|LED]] are [[energy]] efficient, and produce little heat compared to incandescent, fluorescent, and halogen lights. They use the light emitted from a semi conductor in visible wavelengths and combine red green and blue components to produce white light.<ref>https://en.wikipedia.org/wiki/Light-emitting_diode</ref> | |
− | |||
− | [[Light emitting diode|LED]] are [[energy]] efficient, and produce little heat compared to incandescent, fluorescent, and halogen | ||
− | + | LEDs in 2019 can produce about 220 lumens per watt, while incandescent light bulbs produce only about 14 lumens per watt and fluorescents 80 lumens per watt.<ref>https://greatercea.org/lightbulb-efficiency-comparison-chart/</ref> | |
==Human response to light== | ==Human response to light== | ||
Line 21: | Line 23: | ||
===Health=== | ===Health=== | ||
− | The proper wavelengths of light are needed by [[human|humans]] to produce [[Vitamins|Vitamin D]]. | + | The proper wavelengths of light are needed by [[human|humans]] to produce [[Vitamins|Vitamin D]]. On Earth, about 15 minutes under the noon sun, 3 times a week, is enough to produce the required vitamin D.<ref>https://www.healthline.com/nutrition/vitamin-d-from-sun#time-of-day</ref> On Mars, the exposure time would need to be longer. Most type of glass screen ultraviolet light, so exposure under glass would not produce vitamin D. Using ultraviolet light from artificial sources would product the same effect as the sun. |
Certain lights, emulating natural sunlight, are used to treat [[Seasonal affective disorder|Seasonal Affective Disorder]]. | Certain lights, emulating natural sunlight, are used to treat [[Seasonal affective disorder|Seasonal Affective Disorder]]. | ||
Line 32: | Line 34: | ||
===Agriculture=== | ===Agriculture=== | ||
− | Many plants require more sunlight than is available on the | + | Many plants require more sunlight than is available on the Martian surface. [[Dust storms]] can also obscure the sun for months at a time. Artificial lighting is needed to at least augment the natural light. |
+ | |||
+ | Interior grow rooms use artificial light for plant production. This technology was developed for the production of Cannabis in closed environments and container farming but is applicable to all indoor grown plants. The most common power used for these installations is 300-600 W/m2 of lighting, or about one quarter to one half the power of full sunlight. | ||
+ | |||
+ | Food production is a factor of the amount of illumination received by the plant. A useful equation for a surface greenhouse is: | ||
+ | |||
+ | Edible food=0.77 x PAR x T-6.1 (reference needed) where: | ||
− | + | Edible food= Amount of edible plant mass produced (g/m2/day) | |
+ | |||
+ | PAR= lighting level of photosynthetically active radiation. On Mars for natural lighting it is 20.8 (mol/m2/day). | ||
+ | |||
+ | T= transmittance of greenhouse surface. | ||
+ | |||
+ | For a greenhouse with a transmittance of 0,8, food production might be (.77 x 20.8 x .8)-6.1 = 6.7 g/m2/day | ||
+ | |||
+ | For 260 days of production per year the yield would be 1.7 kg/m2 per year, or about 17 t/ha. | ||
+ | |||
+ | This can be compared to the [[Food|crop yields]] obtained on Earth, that vary between 10 and 50 t/ha for high yield crops. So although Mars surface greenhouses can work, the yield might be lower and supplemental lighting required for higher crop yields. | ||
+ | |||
+ | The use of [[hydroponics]] with artificial lighting and many layers of trays can increase yields in t/ha up to 600-2000 t/ha. https://www.freightfarms.com/ | ||
==Lighting levels== | ==Lighting levels== | ||
Line 241: | Line 261: | ||
|} | |} | ||
− | == | + | ==References== |
− | |||
− | |||
− | |||
[[Category:Construction, Assembly, Maintenance]] | [[Category:Construction, Assembly, Maintenance]] | ||
<references /> | <references /> |
Latest revision as of 20:27, 5 January 2023
Lighting is vital for a colony. A colony will have a limited number of windows, so artificial lighting may be required at all times. Plants in greenhouses will probably need to be lit artificially to supplement natural light. Rovers must have headlamps for driving at night or during dust storms.
Contents
Types of lighting
Incandescent
Most light bulbs on Earth were incandescent until recently. Due to their relatively low efficiency, incandescent lights are being phased out all over the world.[1] In most commercial installation incandescent light bulbs have been replaced by fluorescents, that are themselves being replaced by LEDs.
Incandescence is a term usually reserved for a solid that emits light as it is heated. In an incandescent light-bulb a metal filament (Usually tungsten, but carbon has also been used in the past,) is heated to around 3000C. A glass or quartz bulb is fitted around the filament and the air evacuated or replaced by an inert gas, because the filament would otherwise oxidize and burn.
Halogen
Halogen light are a variation on incandescent lights, where the filament can last longer due to chemical interactions between the tungsten element and the halogen gas in the bulb.
Fluorescent
Fluorescent lights use a phosphorous coating inside the lamp tube to transform the ultraviolet light emitted by an ionised plasma in the tube into visible light.
Light Emitting Diode (LED)
LED are energy efficient, and produce little heat compared to incandescent, fluorescent, and halogen lights. They use the light emitted from a semi conductor in visible wavelengths and combine red green and blue components to produce white light.[2]
LEDs in 2019 can produce about 220 lumens per watt, while incandescent light bulbs produce only about 14 lumens per watt and fluorescents 80 lumens per watt.[3]
Human response to light
Humans have two types of vision, color and low-light. Once the vision has adjusted to low light, the average human is able to function well in the light of the full moon, but without the ability to see in color.
Health
The proper wavelengths of light are needed by humans to produce Vitamin D. On Earth, about 15 minutes under the noon sun, 3 times a week, is enough to produce the required vitamin D.[4] On Mars, the exposure time would need to be longer. Most type of glass screen ultraviolet light, so exposure under glass would not produce vitamin D. Using ultraviolet light from artificial sources would product the same effect as the sun.
Certain lights, emulating natural sunlight, are used to treat Seasonal Affective Disorder.
Uses
Illumination
The primary use of lighting is illumination of a settlement. A well-lit environment is vital for the morale and safety of the residents. See table below for standard lighting levels.
Agriculture
Many plants require more sunlight than is available on the Martian surface. Dust storms can also obscure the sun for months at a time. Artificial lighting is needed to at least augment the natural light.
Interior grow rooms use artificial light for plant production. This technology was developed for the production of Cannabis in closed environments and container farming but is applicable to all indoor grown plants. The most common power used for these installations is 300-600 W/m2 of lighting, or about one quarter to one half the power of full sunlight.
Food production is a factor of the amount of illumination received by the plant. A useful equation for a surface greenhouse is:
Edible food=0.77 x PAR x T-6.1 (reference needed) where:
Edible food= Amount of edible plant mass produced (g/m2/day)
PAR= lighting level of photosynthetically active radiation. On Mars for natural lighting it is 20.8 (mol/m2/day).
T= transmittance of greenhouse surface.
For a greenhouse with a transmittance of 0,8, food production might be (.77 x 20.8 x .8)-6.1 = 6.7 g/m2/day
For 260 days of production per year the yield would be 1.7 kg/m2 per year, or about 17 t/ha.
This can be compared to the crop yields obtained on Earth, that vary between 10 and 50 t/ha for high yield crops. So although Mars surface greenhouses can work, the yield might be lower and supplemental lighting required for higher crop yields.
The use of hydroponics with artificial lighting and many layers of trays can increase yields in t/ha up to 600-2000 t/ha. https://www.freightfarms.com/
Lighting levels
Condition | Illumination | Power intensity | |
---|---|---|---|
ftcd | lux | W/m2 (W/ft2) | |
Sunlight | 10000 | 107 527 | 1300 (120) |
Full daylight | 1000 | 10 752 | 130 (12) |
Overcast day | 100 | 1 075 | 13-18 (1,3-1,8) |
Very dark day | 10 | 107 | |
Twilight | 1 | 10,8 | |
Deep twilight | 0,1 | 1,1 | |
Full Moon | 0,01 | 0,11 | |
Quarter moon | 0,001 | 0,011 | |
Starlight | 0,0001 | 0,0011 | |
Overcast night | 0,00001 | 0,00011 |
The table below provides recommended light levels from the IESNA Lighting Handbook and LPD levels from the IECC 2015
ROOM TYPE | LIGHT LEVEL (FOOT CANDLES) | LIGHT LEVEL (LUX) | IECC 2015 LIGHTING POWER DENSITY
Watts/m2 (WATTS PER SF) |
---|---|---|---|
Bedroom - Dormitory | 20-30 FC | 200-300 lux | 4 (0.38) |
Cafeteria - Eating | 20-30 FC | 200-300 lux | 7 (0.65) |
Classroom - General | 30-50 FC | 300-500 lux | 13 (1.24) |
Conference Room | 30-50 FC | 300-500 lux | 13 (1.23) |
Corridor | 5-10 FC | 50-100 lux | 7 (0.66) |
Exhibit Space | 30-50 FC | 300-500 lux | 16 (1.45) |
Gymnasium - Exercise / Workout | 20-30 FC | 200-300 lux | 7,8 (0.72) |
Gymnasium - Sports / Games | 30-50 FC | 300-500 lux | 13 (1.20) |
Kitchen / Food Prep | 30-75 FC | 300-750 lux | 13 (1.21) |
Laboratory (Classroom) | 50-75 FC | 500-750 lux | 16 (1.43) |
Laboratory (Professional) | 75-120 FC | 750-1200 lux | 19 (1.81) |
Library - Stacks | 20-50 FC | 200-500 lux | 18 (1.71) |
Library - Reading / Studying | 30-50 FC | 300-500 lux | 11 (1.06) |
Loading Dock | 10-30 FC | 100-300 lux | 5 (0.47) |
Lobby - Office/General | 20-30 FC | 200-300 lux | 10 (0.90) |
Locker Room | 10-30 FC | 100-300 lux | 8 (0.75) |
Lounge / Breakroom | 10-30 FC | 100-300 lux | 8 (0.73) |
Mechanical / Electrical Room | 20-50 FC | 200-500 lux | 10 (0.95) |
Office - Open | 30-50 FC | 300-500 lux | 11 (0.98) |
Office - Private / Closed | 30-50 FC | 300-500 lux | 12 (1.11) |
Parking - Interior | 5-10 FC | 50-100 lux | 2 (0.19) |
Restroom / Toilet | 10-30 FC | 100-300 lux | 11 (0.98) |
Retail Sales | 20-50 FC | 200-500 lux | 17 (1.59) |
Stairway | 5-10 FC | 50-100 lux | 8 (0.69) |
Storage Room - General | 5-20 FC | 50-200 lux | 7 (0.63) |
Workshop | 30-75 FC | 300-750 lux | 17 (1.59) |
References
- ↑ https://en.wikipedia.org/wiki/Phase-out_of_incandescent_light_bulbs
- ↑ https://en.wikipedia.org/wiki/Light-emitting_diode
- ↑ https://greatercea.org/lightbulb-efficiency-comparison-chart/
- ↑ https://www.healthline.com/nutrition/vitamin-d-from-sun#time-of-day
- ↑ http://www.illumenate.com/lightlevels.htm